
Solving Combinatorial Problems on HPC with BOBPP

Solving Combinatorial Problems on HPC with
BOBPP

Tarek Menouer, Bertrand Le Cun and Pascal Vander-Swalmen

University of Versailles Saint-Quentin-en-Yvelines, France
PRiSM laboratory

November 16, 2012
WOLFHPC 2012

1 / 25

Solving Combinatorial Problems on HPC with BOBPP

Outline

1 Scientific Context

2 Parallel Frameworks for Exact Methods

3 Experiments

4 Conclusion and Perspectives

2 / 25

Solving Combinatorial Problems on HPC with BOBPP
Scientific Context

Outline

1 Scientific Context

2 Parallel Frameworks for Exact Methods

3 Experiments

4 Conclusion and Perspectives

3 / 25

Solving Combinatorial Problems on HPC with BOBPP
Scientific Context

Context of our work

Combinatorial Optimization
Find an assignment to some variables such that

The value of a certain function is minimized (or maximized)
Satisfying some constraints

Academic examples
Vehicle Routing Problem
Knapsack Problem
Travelling Salesman Problem

4 / 25

Solving Combinatorial Problems on HPC with BOBPP
Scientific Context

Combinatorial Optimization Problems

Combinatorial Explosion: The Travelling Salesman Problem
Brut Force: TSP, 20 cities, 20! tours, 10−9 s/tour = 77.14 years
Parallelization with 1,000 cores and 50 % efficiency same problem:
10−9 seconds/tour = 56,31 days

Combinatorial Explosion
Operational Research (OR)

Use OR methods to reduce the size of search space
Evaluation/Prunning of partial solutions

Parallelization
Parallelization to solve quicker the problem with greater size

Exact resolution up to 15112 cities
Specific Parallel Branch & Cut: Concorde
22,6 years equivalent sequential time by Applegate, Bixby, Chvátal and Cook

5 / 25

Solving Combinatorial Problems on HPC with BOBPP
Scientific Context

Combinatorial Optimization Problems

Combinatorial Explosion: The Travelling Salesman Problem
Brut Force: TSP, 20 cities, 20! tours, 10−9 s/tour = 77.14 years
Parallelization with 1,000 cores and 50 % efficiency same problem:
10−9 seconds/tour = 56,31 days

Combinatorial Explosion
Operational Research (OR)

Use OR methods to reduce the size of search space
Evaluation/Prunning of partial solutions

Parallelization
Parallelization to solve quicker the problem with greater size

Exact resolution up to 15112 cities
Specific Parallel Branch & Cut: Concorde
22,6 years equivalent sequential time by Applegate, Bixby, Chvátal and Cook

5 / 25

Solving Combinatorial Problems on HPC with BOBPP
Scientific Context

Combinatorial Optimization Problems

Combinatorial Explosion: The Travelling Salesman Problem
Brut Force: TSP, 20 cities, 20! tours, 10−9 s/tour = 77.14 years
Parallelization with 1,000 cores and 50 % efficiency same problem:
10−9 seconds/tour = 56,31 days

Combinatorial Explosion
Operational Research (OR)

Use OR methods to reduce the size of search space
Evaluation/Prunning of partial solutions

Parallelization
Parallelization to solve quicker the problem with greater size

Exact resolution up to 15112 cities
Specific Parallel Branch & Cut: Concorde
22,6 years equivalent sequential time by Applegate, Bixby, Chvátal and Cook

5 / 25

Solving Combinatorial Problems on HPC with BOBPP
Scientific Context

Methods

Exact Algorithms
Implicit total enumeration
Tree search-space
Divide&Conquer,
Branch&Bound,
Branch&Cut, . . .
Constraint programming

Heuristic Algorithms
Not exhaustive
Greedy heuristics
Local search
Meta : Simulated Annealing,
Tabu search, Genetic
algorithms, . . .

6 / 25

Solving Combinatorial Problems on HPC with BOBPP
Scientific Context

Methods

Exact Algorithms
Implicit total enumeration
Tree search-space
Divide&Conquer,
Branch&Bound,
Branch&Cut, . . .
Constraint programming

Heuristic Algorithms
Not exhaustive
Greedy heuristics
Local search
Meta : Simulated Annealing,
Tabu search, Genetic
algorithms, . . .

6 / 25

Solving Combinatorial Problems on HPC with BOBPP
Scientific Context

Usefull functionalities for exact methods

The user must define the problem, mainly the data stored in the node.

7 / 25

Solving Combinatorial Problems on HPC with BOBPP
Scientific Context

Usefull functionalities for exact methods

The user describes how a node is generated from a parent node
(the child generation) according to the branching strategy

7 / 25

Solving Combinatorial Problems on HPC with BOBPP
Scientific Context

Usefull functionalities for exact methods

The user describes a work on node: evaluation function, constraint
propagation, . . .

7 / 25

Solving Combinatorial Problems on HPC with BOBPP
Scientific Context

Usefull functionalities for exact methods

The user may choose between different exploration strategies
(best first, depth-first search, etc)

7 / 25

Solving Combinatorial Problems on HPC with BOBPP
Scientific Context

Usefull functionalities for exact methods

The user may choose what is the goal of the search : the best solution,
the number of feasible/best solutions. that implicates the stop criteria.

7 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

Outline

1 Scientific Context

2 Parallel Frameworks for Exact Methods

3 Experiments

4 Conclusion and Perspectives

8 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

Related Works

Frameworks Solving Exact Combinatorial Optimization problems
Space search based algorithms
Parallel Programming environments

Searches
Divide & Conquer
Branch & X
A*
. . .

Programming Environments
PThreads
MPI
KAAPI
. . .

Usual Frameworks
Designed for one algorithm and for one specific programming environment

9 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

Related Works

Frameworks Solving Exact Combinatorial Optimization problems
Space search based algorithms
Parallel Programming environments

Searches
Divide & Conquer
Branch & X
A*
. . .

Programming Environments
PThreads
MPI
KAAPI
. . .

Usual Frameworks
Designed for one algorithm and for one specific programming environment

9 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

Frameworks issues

Several parallelizations
Two algorithms may have two different behaviours
There does not exist only one ultimate parallelization

Several parallel environments
Different parallel architectures ⇒ different parallel algorithms and
libraries

Shared memory: threads and mutex
Distributed memory : processes and messages
Cluster of SMPs: threads and processes
. . .

10 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

BOBPP

Objectives
Solve Combinatorial Optimization Problems based on search-trees

Divide & Conquer
Branch & Bound
Branch & Cut
Branch & Price

Framework which proposes an interface to write such
algorithms in sequential and parallel

Functionalities for solving combinatorial problems
Search strategies: depth-first, breadth-first, best-first, "best of the
deepest"-first, . . .
Aims: best solution, number of best solutions, . . .

11 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

BOBPP

Objectives
Solve Combinatorial Optimization Problems based on search-trees

Divide & Conquer
Branch & Bound
Branch & Cut
Branch & Price

Framework which proposes an interface to write such
algorithms in sequential and parallel

Functionalities for solving combinatorial problems
Search strategies: depth-first, breadth-first, best-first, "best of the
deepest"-first, . . .
Aims: best solution, number of best solutions, . . .

11 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

BOBPP

Objectives
Solve Combinatorial Optimization Problems based on search-trees

Divide & Conquer
Branch & Bound
Branch & Cut
Branch & Price

Framework which proposes an interface to write such
algorithms in sequential and parallel

Functionalities for solving combinatorial problems
Search strategies: depth-first, breadth-first, best-first, "best of the
deepest"-first, . . .
Aims: best solution, number of best solutions, . . .

11 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

BOBPP

12 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

BOBPP

12 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

BOBPP

12 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

Frameworks comparison

Algorithms Environments
Framework B&B B&B+LP B&P B&C D&C THR MPI Hybrid
PPBB X X
BCP X X X X

Symphony X X X X X
PEBBL X X
CBC X X X X

BOBPP X X X X X X X X

BOBPP sources
http://forge.prism.uvsq.fr/projects/bobpp

13 / 25

http://forge.prism.uvsq.fr/projects/bobpp

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

BOBPP, Objects

Classes Involved
Common functionalities:

Class Node: * Represents a node of the search-tree
Class Genchild: * Methods generating the children of the nodes
Class Instance: * Stores all the global data used during the search

Class Goal: Stores the solution
Class Algo: Method for the main loop

Class Priority Queue: Stores all the nodes during the search
Redefined by the user for his specific problem

Parallelism
Each thread executes the Algo main loop
Each thread access asynchronously to the Global Priority Queue
and to update the Goal

14 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

BOBPP, Objects

Classes Involved
Common functionalities:

Class Node: * Represents a node of the search-tree
Class Genchild: * Methods generating the children of the nodes
Class Instance: * Stores all the global data used during the search

Class Goal: Stores the solution
Class Algo: Method for the main loop

Class Priority Queue: Stores all the nodes during the search
Redefined by the user for his specific problem

Parallelism
Each thread executes the Algo main loop
Each thread access asynchronously to the Global Priority Queue
and to update the Goal

14 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

BOBPP, Objects

Classes Involved
Common functionalities:

Class Node: * Represents a node of the search-tree
Class Genchild: * Methods generating the children of the nodes
Class Instance: * Stores all the global data used during the search

Class Goal: Stores the solution
Class Algo: Method for the main loop

Class Priority Queue: Stores all the nodes during the search
Redefined by the user for his specific problem

Parallelism
Each thread executes the Algo main loop
Each thread access asynchronously to the Global Priority Queue
and to update the Goal

14 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

BOBPP, Priority Queue Principle

Steps
1 Nodes of the

search-tree
2 Each thread selects

one node
3 Each thread generates

the children
4 If a solution is found,

the goal is updated
5 The other nodes are

inserted in the Priority
Queue

15 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

BOBPP, Priority Queue Principle

Steps
1 Nodes of the

search-tree
2 Each thread selects

one node
3 Each thread generates

the children
4 If a solution is found,

the goal is updated
5 The other nodes are

inserted in the Priority
Queue

15 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

BOBPP, Priority Queue Principle

Steps
1 Nodes of the

search-tree
2 Each thread selects

one node
3 Each thread generates

the children
4 If a solution is found,

the goal is updated
5 The other nodes are

inserted in the Priority
Queue

15 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

BOBPP, Priority Queue Principle

Steps
1 Nodes of the

search-tree
2 Each thread selects

one node
3 Each thread generates

the children
4 If a solution is found,

the goal is updated
5 The other nodes are

inserted in the Priority
Queue

15 / 25

Solving Combinatorial Problems on HPC with BOBPP
Parallel Frameworks for Exact Methods

BOBPP, Priority Queue Principle

Steps
1 Nodes of the

search-tree
2 Each thread selects

one node
3 Each thread generates

the children
4 If a solution is found,

the goal is updated
5 The other nodes are

inserted in the Priority
Queue

15 / 25

Solving Combinatorial Problems on HPC with BOBPP
Experiments

Outline

1 Scientific Context

2 Parallel Frameworks for Exact Methods

3 Experiments

4 Conclusion and Perspectives

16 / 25

Solving Combinatorial Problems on HPC with BOBPP
Experiments

Protocol

Problems
Quadratic Assignment Problem (QAP) (B&B algorithm)
Golomb ruler Problem (D&C algorithm + OR-Tools Constraint
Programming Solver)

Figure: QAP
Figure: Golomb Ruler

Computers
Machine 1: AMD, 48 cores
Machines 2 and 3: Intel, (with HT), 12 cores

17 / 25

Solving Combinatorial Problems on HPC with BOBPP
Experiments

BOBPP on shared memory machines, results

 157.69
 411.49
 672.83

 2416

 1 4 8 12 16 20 24 30 36 42 48

 3.5

 5.8

 7.7

 9.4
 10.8
 12.3
 13.8
 15.3

tim
e

(s
ec

on
ds

)

sp
ee

du
p

threads

time
speedup

Mean computation time and speed-up for the QAP on Machine 1

18 / 25

Solving Combinatorial Problems on HPC with BOBPP
Experiments

BOBPP on shared memory machines, results

 146.6
 261.7
 447.4

 1704.4

 1 4 8 12 16ht 20ht 24ht

 3.8

 6.5

 9.6

 10.8
 11.6

tim
e

(s
ec

on
ds

)

sp
ee

du
p

threads

time
speedup

Mean computation time and speedup for the QAP on machine 2
Break on the curves beginning at 12 threads (Hyper-Threading)

18 / 25

Solving Combinatorial Problems on HPC with BOBPP
Experiments

Preliminary results using hybrid MPI/Pthreads

MPI # thr./ total time speedup % sended/
Machine proc proc # thr. (s.) explored

1 4 12 48 85.46 19.95 0.265
1 7 7 49 68.93 24.73 0.290

2&3 2 12 24 137.38 12.41 0.178
2&3 4 6 24 133.42 12.78 0.226
all 16 6 96 41.50 41.07 0.455

Informations
Speedup computed according to our best seq. time: 1,704.44 s.
Very small nodes
Mean number of nodes explored: 248,732,621
Mean % of sended nodes compared to explored nodes: 0.256 %
MPI/Threads version is more efficient than the threads one due to
memory allocation contention.

19 / 25

Solving Combinatorial Problems on HPC with BOBPP
Experiments

Using a Constraint Programming Solver

OR-Tools
Open source library and solver developed by Google
Constraint programming methods we used are exact methods that
handle a search tree.

Porting OR-Tools on top of BOBPP
An OR-Tools solver handles its own search tree
One OR-Tools solver per BOBPP search Algo
Migration of sub-trees between OR-Tools solvers to perform load
balancing

PAJERO project funded by OSEO a public-sector institution dedicated to economic development

20 / 25

Solving Combinatorial Problems on HPC with BOBPP
Experiments

OR-Tools/BOBPP results

 277
 943

 1717
 2758

 10565

 1 4 8 16 24 32 40 48
 1
 3.8
 6.1

 11.2

 17.5

 24.6

 31.7

 38.1
tim

e
(s

ec
on

ds
)

sp
ee

du
p

threads

time
speedup

Execution time and speedup solving the Golomb of size 13
Good speedup

21 / 25

Solving Combinatorial Problems on HPC with BOBPP
Experiments

OR-Tools/BOBPP results

 200
 215

 248

 1 4 10 20 30 40 48
 0

 1274
 1508

 1957

tim
e

(s
ec

on
ds

)

nu
m

be
r

of
 n

od
es

 (
th

ou
sa

nd
s)

thread ID

time
number of nodes

Load balancing on 48 threads solving the Golomb-13
Good load balancing

21 / 25

Solving Combinatorial Problems on HPC with BOBPP
Conclusion and Perspectives

Outline

1 Scientific Context

2 Parallel Frameworks for Exact Methods

3 Experiments

4 Conclusion and Perspectives

22 / 25

Solving Combinatorial Problems on HPC with BOBPP
Conclusion and Perspectives

Conclusion

The BOBPP Framework manages the search-tree
Whatever the final machine
For a large variety of combinatorial problems

Advantages
One algorithm developed by the user
Easy to use
Easy to test and develop better node generations
Easy to find the best strategy

23 / 25

Solving Combinatorial Problems on HPC with BOBPP
Conclusion and Perspectives

Perspectives

BOBPP Framework
MPI/Threads need more experiments
Perform test on larger machines (Grid5000)
Reduce the memory allocation bottleneck using recursive search with
a branch of preallocated nodes since a fixed depth.
Perform tests with industrial problems developed by other members
of the lab

Crew Scheduling: Branch& Price,
Power minimization of wireless sensor network: Branch& Cut,
Nurse planning: Constraint Programming
Restaurant waiters planning: Constraint Programming

24 / 25

Solving Combinatorial Problems on HPC with BOBPP
Conclusion and Perspectives

End of presentation

Thank you

BOBPP sources
http://forge.prism.uvsq.fr/projects/bobpp

25 / 25

http://forge.prism.uvsq.fr/projects/bobpp

	Scientific Context
	Parallel Frameworks for Exact Methods
	Experiments
	Conclusion and Perspectives

